from ultralytics import YOLO # from ultralytics.yolo.utils.benchmarks import benchmark # Load a model # model = YOLO("yolov8n.yaml") # build a new model from scratch # model = YOLO("../runs/detect/train3/weights/best.pt") # zhou model = YOLO("../runs/detect/train4/weights/best.pt") # 1000 img, mine model = YOLO("../runs/detect/train2/weights/best.pt") # 1000 img, based on 3000 img # model = YOLO("../../../project/runs/detect/train3/weights/best.pt") # 3000 img, mine # Use the model # model.train(data="coco128.yaml", epochs=3,workers=0) # train the model,workers=0 if windows # metrics = model.val() # evaluate model performance on the validation set img_path = "./image" results = model.predict(img_path, save = True) # device=0 by default, conf:置信度阈值 # results = model.predict(img_path,save=True,classes=[0,2],conf=0.5) # i.e. classes=0,classes=[0,3,4] # save detection results * # results = model.predict(img_path,save=True,save_txt=True,classes=0,conf=0.4)