40 lines
1.2 KiB
Python
40 lines
1.2 KiB
Python
|
import cv2
|
||
|
from ultralytics import YOLO
|
||
|
|
||
|
# Load the YOLOv8 model
|
||
|
# model = YOLO("../runs/detect/train3/weights/best.pt") # zhou
|
||
|
# model = YOLO("../runs/detect/train4/weights/best.pt") # 1000 img, mine
|
||
|
# model = YOLO("../runs/detect/train2/weights/best.pt") # 1000 img, based on 3000 img
|
||
|
model = YOLO("../../../project/runs/detect/train3/weights/best.pt") # 3000 img, mine
|
||
|
|
||
|
|
||
|
# Open the video file
|
||
|
video_path = "./video/demo_video_no_detection.mp4"
|
||
|
cap = cv2.VideoCapture(video_path)
|
||
|
|
||
|
# Loop through the video frames
|
||
|
while cap.isOpened():
|
||
|
# Read a frame from the video
|
||
|
success, frame = cap.read()
|
||
|
|
||
|
if success:
|
||
|
# Run YOLOv8 inference on the frame
|
||
|
results = model(frame)
|
||
|
|
||
|
# Visualize the results on the frame
|
||
|
annotated_frame = results[0].plot()
|
||
|
|
||
|
# Display the annotated frame
|
||
|
cv2.imshow("YOLOv8 Inference", annotated_frame)
|
||
|
|
||
|
# Break the loop if 'q' is pressed
|
||
|
if cv2.waitKey(1) & 0xFF == ord("q"):
|
||
|
break
|
||
|
else:
|
||
|
# Break the loop if the end of the video is reached
|
||
|
break
|
||
|
|
||
|
# Release the video capture object and close the display window
|
||
|
cap.release()
|
||
|
cv2.destroyAllWindows()
|